Recent Development in High Power Capacitive Wireless Power Transfer

Leadership Starts Here

Chris Mi, Ph.D, Fellow IEEE

Professor and Chair, Dept. Electrical and Computer Engineering Director, DOE GATE Center for Electric Drive Transportation San Diego State University, (619)594-3741; mi@ieee.org

Contents

- Introduction to SDSU
- Introduction of Wireless Power Transfer
- Double-sided LCLC Compensation Topology
- Capacitive Coupler Structure
- Prototypes and Experimental Results
- System Improvements
- Conclusion and Future Work

San Diego State University

Why WPT: Conductive Charging and Battery Swapping Have Some Issues

Electric safety is of concern: electric shock due to rain, etc.

Charge station, plug and cable can be easily damaged, stolen

Charge/swap station takes a lot of space and affect the views

History of Wireless Power Transfer

- 1830's: Faraday's law of induction
- 1890's: Tesla had a dream to send energy wirelessly
- 1990's: GM EV1 used an Inductive charger
- 2007: MIT demonstrated a system that can transfer 60W of power over 2 m distance at very low efficiency
- 2010: Wireless/inductive chargers are available: electronics, factories, medical
- 2012: Qualcomm, Delphi (Witricity), KAIST, etc. have developed EV wireless charger prototypes
- 2014: in-motion charging demonstration: Daejoen, Vienna, London

"Tesla Broadcast Tower 1904" by Unattributed(Life time: Unattributed) - Original publication: UnknownImmediate source: http://www.sftesla.org/images/Tesla_Broadcast_Tower.JPG. Licensed under Public domain via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Tesla_Broadcast_Tower_19 04.jpeg#mediaviewer/File:Tesla_Broadcast_Tower_1904.jpeg

The Predicted Wireless Charging Market: \$17 Billion by 2019, including applications in consumer electronics, home appliance, industrial robots, and EV charging

Limitations of Current WPT

Motivation: Disadvantages of IPT

- **Cost and Weight**
	- \triangleright Ferrite and Litz-wire are heavy and expensive
- Significant Eddy-Current Loss in Nearby Metals
	- \triangleright Reduce system efficiency and cause temperature rise
- Misalignment Performance
	- \triangleright System power drops rapidly with misalignment

Analogy of CPT and IPT

- \triangleright Electric field is not sensitive to metal material nearby
- \triangleright Electric field does not generate eddy-current loss in the metal
- ➢ CPT coupler uses metal plates, instead of Litz-wire, reduce system cost

Challenges of CPT for EV Charging

- Small Coupling Capacitance $d = 150$ mm ➢ An Example: Plates Size l_1 =610mm (24in) ➢ Distance *d*=150mm Coupling capacitance of parallel plates is $[8]$: $C_s = [1 + 2.343 \cdot (d/l_1)^{0.891}] \cdot \frac{\varepsilon \cdot l_1^2}{d} = 36.7 \text{pF}$ $= [1 + 2.343 \cdot (d/l_1)^{0.891}] \cdot \frac{\varepsilon \cdot l_1^2}{d} = 36.7$ 2 \mathcal{E} . 0.891 ² \cdot ¹1 *d* **Contract** The former compensation topologies are not suitable to transfer **HIGH** power $l_1 = 610$ mm
	- ➢ Series or parallel topology: requires too large inductance or too high switching frequency

with so **SMALL** coupling capacitance

[8] H. Nishiyama, M. Nakamura, "Form and Capacitance of Parallel Plate Capacitor," IEEE Transactions on Components, Packing, and Manufacturing Tech-Part A, Vol 17, 1994, 477-484.

Double-sided LCLC Circuit Topology

- ➢ Two inductors and two capacitors are used at each side
- \triangleright P₁ and P₂ are at the primary side, P₃ and P₄ are at the secondary side
- \triangleright P₁ and P₃ form a coupling capacitor, P₂ and P₄ form the other capacitor

10 F. Lu, H. Zhang, H. Hofmann and C. Mi, "A Double-Sided LCLC-Compensated Capacitive Power Transfer System for Electric Vehicle Charging," in *IEEE Transactions on Power Electronics*, vol. 30, no. 11, pp. 6011-6014, Nov. 2015. doi: 10.1109/TPEL.2015.2446891

System Power of FHA Analysis

 \triangleright At input inverter side, V_1 and I_1 are in phase

 \triangleright At output rectifier side, V₂ and (-I₂) are in phase

➢ Neglect passive components losses, the system power is expressed as:

► At output rectifier side,
$$
V_2
$$
 and $(-I_2)$ are in phase
\n► Neglect passive components losses, the system power is expressed as:
\n
$$
P_{in} = P_{out} = \frac{\omega_0 C_s \cdot C_{f1} C_{f2}}{C_1 C_2 + C_1 C_s + C_2 C_s} \cdot V_1 \cdot V_2 = \frac{\omega_0 C_s \cdot C_{f1} C_{f2}}{C_1 C_2 + C_1 C_s + C_2 C_s} \cdot \frac{2\sqrt{2}}{\pi} \cdot V_{in} \cdot \frac{2\sqrt{2}}{\pi} \cdot V_{out}
$$

 \triangleright If there exists $C_{1,2}$ \triangleright $C_{\rm s}$ $_{1}C_{f2}$ $\overline{C_1C_2}$ $f_1 C_{f2}$, $2\sqrt{2}$, V , $2\sqrt{2}$ $P_{\text{in}} = P_{\text{out}} \approx \omega_0 C_s \cdot \frac{C_{f1}C_{f2}}{C C} \cdot \frac{\angle \sqrt{2}}{\pi} \cdot V_{\text{in}} \cdot \frac{\angle \sqrt{2}}{\pi} \cdot V_{\text{out}}$ $C_{f1}C$ $C_{1,2}$ >> C_{s}
 $P_{in} = P_{out} \approx \omega_0 C_s \cdot \frac{C_{f1}C_{f2}}{C C} \cdot \frac{2\sqrt{2}}{\pi} \cdot V_{in} \cdot \frac{2\sqrt{2}}{\pi} \cdot V_{in}$ $\frac{C_{f1}C}{C_{1}C_{1}}$ ω $\frac{\sqrt{2}}{\pi}\cdot V_{in}\cdot\frac{2\sqrt{2}}{\pi}\cdot V_{o}$ $S > C_s$
= $P_{out} \approx \omega_0 C_s \cdot \frac{C_{f1}C_{f2}}{C} \cdot \frac{2\sqrt{2}}{\pi} \cdot V_{in} \cdot \frac{2\sqrt{2}}{\pi} \cdot V_{out}$

11

Parameter Design and Simulation

➢ A 2.4kW CPT system is designed with parameters in the following table.

 \triangleright Circuit simulation is shown below

Voltage and Current Stress

➢ Voltage are current stress are calculated by the previous FHA analysis

- ➢ Inductors are wound with multiple turns to reduce voltage stress between turns
- \triangleright Multiple capacitors are connected in series to form C₁ and C₂
- \triangleright Multiple capacitors are connected in parallel to form C_{f_1} and C_{f_2}
- ➢ The electric field in this system is 3.2kV/150mm, and the breakdown field of air is about 3.0kV/mm. Therefore, there is no concern of arcing

Prototype Design

- \triangleright Plates are made by aluminum sheets
- ➢ Inductors are wound by AWG46 Litz-wire without magnetic core
- ➢ High-power-frequency thin film capacitors resonate with the inductors
- ➢ Silicon Carbide (SiC) MOSFETs C2M0025120D are used in the inverter
- \triangleright SiC diodes IDW30G65C5 are used in the rectifier 14

Experimental Results

- ➢ *Pout*=2.4kW at designed input/output
- \triangleright The experimental waveform is the same with the simulations
- ➢ Soft-switching is achieved
- ➢ There is high frequency noise on the driver signal
- ➢ Most of the power losses distribute on the capacitors and plates
- \triangleright If the inductors are wound on magnetic core, the system efficiency will drop 1%-3%.

Tolerance to Misalignment and Distance

➢ Output Power maintains 2.1 kW at 300 mm X axis misalignment

Pout (kW)

➢ Output Power maintains 1.7 kW at 300 mm Z axis distance \overline{B} dis T.7 NVV at 300 min \overline{L} axis \overline{S}

Potential Improvements

LCL Compensation Topology

➢ Compensation topology is simplified and The LCL compensation circuit is used to resonate with the plates, instead of the LCLC topology

H. Zhang; F. Lu; H. Hofmann; W. Liu; C. Mi, "A 4-Plate Compact Capacitive Coupler Design and LCL-Compensated Topology for Capacitive Power Transfer in Electric Vehicle Charging Applications," in *IEEE Transactions on Power Electronics* , vol.PP, no.99, pp.1-1; doi: 10.1109/TPEL.2016.2520963

IPT+CPT Combined System

 \triangleright The two inductors L₁ are L₂ are inductively coupled ➢ The system utilized both electric and magnetic fields to transfer power

19 F. Lu; H. Zhang; H. Hofmann; C. Mi, "An Inductive and Capacitive Combined Wireless Power Transfer System with LC-Compensated Topology," in *IEEE Transactions on Power Electronics* , vol.PP, no.99, pp.1-1, doi: 10.1109/TPEL.2016.2519903

Experiments of IPT+CPT Combined System

- \geq Coil size: 320 \times 320mm
- \triangleright Plate size: 610 \times 610mm
- ➢ Only LC compensation network is required at each side
- Rectifier Plates Coils C_{f1} Inverter
- \triangleright At nominal input and output condition,
	- *P*_{IPT}=2000W, and
	- *PCPT*=800W
- \triangleright The system also has good misalignment ability

Misalignment Performance

 \triangleright C_M remains 84.2% of the well-aligned value, L_M remains 30% of the wellaligned value

 \triangleright C_M remains 66.5% of the well-aligned value, L_M remains 41% of the well-aligned value

Misalignment Performance

Output Power

Advantage: Compared to an IPT system, misalignment performance is improved

 \triangleright Output power drops to 1.35 kW at 200 mm misalignment (47.5% of wellaligned power)

Efficiency

Advantage: Compared to a CPT system, efficiency is improved

DC-DC efficiency remains higher than 91.5%

Dynamic Capacitive Power Transfer [11]

- \triangleright Reduce system cost using metal plates as capacitive couplers
- \triangleright Reduce stand-by power loss because of small circulating current in the coupler
- [11] F. Lu, H. Zhang, H. Hofmann, Y. Mei, C. Mi, "A Dynamic Capacitive Power Transfer System with Reduced Power Pulsation," Proc. IEEE Workshop Emerg. Tech. Wireless Power Trans. (WoW), pp. 60-64, 2016.

Experimental Prototype

- ➢ Transmitter size: 1200mm×300mm
- ➢ Receiver size: 300mm×300mm
- ➢ Airgap distance: 50mm

LC Compensated CPT Repeater System

- LC compensation circuitry compensate the capacitive coupler
- Parameters are designed to achieve resonances

100W Prototype

- Aluminum plates are used to make capacitive coupler
- Transfer distance is 180mm + 180mm

Single Ended CPT System

Safety Issue and Impact of Foreign Object

High voltages on plates

• An example:
$$
P_M = 3.0
$$
kW, $f_{sw} = 1$ MHz

$$
P_M = \omega C_M \cdot |V_C|^2
$$

- ➢ Voltages are in kV level
- \triangleright Solution: reliable insulation is required on plate surface

Electric Field Emissions

• $|V_{C1}|=|V_{C2}|=5.2$ kV, $|V_{14}|=|V_{23}|=4.2$ kV, and $|V_{13}|=|V_{24}|=3.1$ kV

 \triangleright Safe range is 700mm from the edge of plates

Solution: Six-Plate Coupler^[12]

- \triangleright P5 is grounded, and P6 is equivalently grounded
- \triangleright Safe range is 120mm from the edge
- \triangleright Further research shows safe range is 400 mm from the edge with 300 mm misalignment

[12] H. Zhang, F. Lu, H. Hofmann, C. Mi, "A Six-Plate Capacitive Coupler to Reduce Electric Field Emission in Large Airgap Capacitive Power Transfer," IEEE Trans. Power Electron., 2017, doi: 10.1109/ TPEL.2017.2662583.

Metallic Foreign Object Influence

- ➢ Positions A5, A8, A9, A10, and A11 are sensitive positions
- \triangleright The influence becomes significant with increasing metal size

Circuit Model of Human Touch

- \triangleright At high frequency, human model is approximated to be 500 Ω resistor (IEC)
- ➢ High-frequency (above 100 kHz) current has no neurological and cardiac problem (IEEE 95.1)
- \triangleright Circuit simulation shows $I_h=2.2$ A, which may cause heating problem
- \triangleright IEEE C95.1 requires everage energy density lower than 144J/kg in 6 minutes
- \triangleright Safe with 100 ms protection mechanism

$$
D = \frac{I_b^2 \times R_b \times t}{m} = \frac{2.2^2 \times 500 \times 0.1}{60} = 4.03 \, J/kg < 144 \, J/kg
$$

Final Comparison of CPT and IPT

We are committed to conduct research to improve performance, efficiency and safety

Proud Sponsors

U.S.-China Clean
Energy Research Center 中美清洁能源研究中心

DENSO

Hardworking Students!

Thanks!