

1D thermal simulation of electric vehicle - Virtual operating strategy development for transient drive cycles

ALMAGNA

MAGNA

3D CFD Simulation and/or 1D Simulation?

- Reasons for 3D CFD Simulation…
	- High level of detail
	- High fidelity of results
	- Can handle complex geometries
	- Established workflows and the theory
- Reasons for 1D simulation...
	- Very fast
	- Little modelling effort
	- No CAD geometry required
	- Can work with few data

Simulating electric vehicles often requires "the best of both worlds"

- Transient simulation of drive cycles for
- Complete cooling systems with
- Cell level battery pack simulation models and
- Detailed temperature results for e-motor components

Agenda Overview…

Thermal Management Simulation of…

• **Motor/Inverter**

- − **E1 Motors**
- **Battery**
- − **Air Cooled i-MiEV**
- − **Coolant Cooled Tesla S**
- **- Handling of big amount of cells**
- **Vehicle Model** − **E1 Democar**

… and of the complete vehicle model.

2/26/2018 J. Poehl, Magna

Agenda Battery Simulation

Thermal Management Simulation of…

… and of the complete vehicle model.

- **Motor/Inverter** − **E1 Motors**
	-
- **Battery**
	- − **Air Cooled i-MiEV**
	- − **Coolant Cooled Tesla S**
	- − **Handling of big amount of cells**
- **Vehicle Model** − **E1 Democar**

2/26/2018 J. Poehl, Magna

3D Simulation Results of an E-Motor Rotor… … and 1D discretization

These details need to be available in the 1D simulation model as well! (other details can be neglected)

Rotor and Stator Discretization

Discretization Rotor: PM1, 6, 7: rotor winding; PM2, 8: rotor iron sheet; PM3, 4, 5: shaft

Discretization Stator:

PM1, 2: cooling jacket; PM3, 4: stator winding; PM5, 6: stator iron sheet

Discretization of one component into several point masses \rightarrow temperature distribution

1D Thermal Network for an Electric Motor

Calibration for steady state operating points and load steps based on CFD results…

ALMAGNA

Agenda Battery Simulation

Thermal Management Simulation of…

… and of the complete vehicle model.

- **Motor/Inverter**
	- − **E1 Motors**
- **Battery**
	- − **Air Cooled i-MiEV**
	- − **Coolant Cooled Tesla S**
	- − **Handling of big amount of cells**
- **Vehicle Model** − **E1 Democar**

2/26/2018 J. Poehl, Magna

1) Mitsubishi i-MiEV Battery Pack

Back module pack (10 modules) **(5 modules)** 2 additional modules Front module pack **(5 modules)**

- Air cooled battery
- 88 Lilon battery cells
	- Cell type: Yuasa-Mitsubishi LEV 50
	- Cell capacity: 50Ah
	- Nominal voltage: 3.7V
	- Cell weight: 1.7kg
- 22 modules á 4 cells
- All cells electrically in series yields pack voltage 325.6V

Mitsubishi i-MiEV Battery Pack Schematics and Main Physical Effects

MMAGNA

Mitsubishi i-MiEV Battery Pack Simulation Model

2) Magna E1 Battery Pack (Tesla 85kWh)

16 modules á 444 cells (Panasonic 18650) \rightarrow 7104 cells

Module has 6s74p layout \rightarrow module voltage ~25.2V All modules electrically in series \rightarrow pack voltage ~403.2V

Coolant flow through modules in parallel…

Magna E1 Battery Pack Simulation Model

Reduce Amount of Cells

MMAGNA

Simplification of Battery Pack For Faster Vehicle Model Simulation with Detailed Cell Properties

Agenda Complete Vehicle Simulation

Thermal Management Simulation of…

… and of the **complete vehicle model**.

• **Motor/Inverter** − **E1 Motors**

- **Battery**
- − **Air Cooled i-MiEV**
	- − **Coolant Cooled Tesla S**
- − **Handling of big amount of cells**
- **Vehicle Model** − **E1 Democar**

2/26/2018 J. Poehl, Magna

Magna Powertrain Electric Vehicle Demonstrator

Objectives:

- Demonstrate eDrive product capabilities
- Proof system and vehicle Integration capabilities

MMAGNA

- Vehicle controls: improved stability and handling
- Electronic Torque Vectoring (eTV)

Technical Data:

Front Axle: Highly Integrated eDrive System, with ASM Peak power 140kW (for 60s) Peak Torque 3300Nm (10s)
Inverter (integrated) 500A_{rms} Inverter (integrated)

- Rear Axle: Highly Integrated eDrive System, 2 x ASM with summation gearbox, with axle lock clutch (eTV) Peak power 280kW (for 20s) Peak Torque 6600Nm (10s) Inverter (integrated) $2x\,500A_{rms}$
- Both drives: Liquid cooled Inverter, e-Motor stator and rotor Enhanced thermal management Rare Earth free

Tesla S / Magna E1 Simulation Model Overview

ALMAGNA

3D/1D Component Models in this Vehicle Model

• **Electric Motors**: Modeled as 1D thermal networks calibrated with 3D CFD results and validated with measurements

M MACNA

- **Transmission Systems**: same approach as motors
- **Battery**: 1D simulation model, currently partially calibrated, final model will be calibrated based on test data
- **Underhood air flow**: Flow distribution calibrated to fit test data. Calibration based on CFD is possible but was not used in this project
- **Cabin**: Partially calibrated based on test data. Complete calibration would require CFD simulation… not done yet!

Focus Points for the Simulation

Battery Pack ALMAGNA Cell Temperatures for Different Drive Cycles @ 21°C

Electric Powertrain Rear Motor T for Different Drive Cycles @ 21°C

ALMAGNA

Cooling System Operating Strategy FTP75

83.CALC serial flow, 1...parallel flow FAN: 90 T Rotor 1.RAD.Exit temperature IM **D-32** 2000 rpm 80 \times 71.CST 52 °C ambient 80 will $\times4$ **T Coolant Exit Shaft** 72.CST $80 °C$ temperature: \times ● T Mass Rotor Winding 70 30°C **Driving Speed** 70 2.TOTZ $\begin{picture}(20,20) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line(1$ 60 Y -axis 1 \degree 60 50 40 50 30_o 4-way valve opens when 20° 40 $T_{\text{rotor}} > 80^{\circ}C$ 10 30 500 1000 1500 X-axis [s]

ALMAGNA

J. Poehl, Magna

Vehicle Range Ambient Temperature Influence on WLTC Range

MMAGNA

Vehicle Range Impact of Battery Heating for WLTC at -10°C

MMAGNA

Vehicle Range Impact of Battery Heating for WLTC at -10°C

- **No Heating**
- **Max Heating 1kW**
- **Max Heating 2kW** \bullet
- **Max Heating 3kW** \bullet
- "Time to 0°C" decreases with more heating power
- Total heating energy remains approximately the same (more heat, but shorter heating duration)
- Heater switches off at 10°C min cell T or 25°C max cell T (safety)

Summary

- A combined 3D / 1D approach combines fast simulation times (~ real time) with selective high levels of detail
- This allows investigation of complex interactions in complete vehicle thermal management simulation models combining
	- Powertrain Cooling & Driving Simulation
	- Battery Cooling & VTM Strategies
	- HVAC System & Comfort Strategies
	- Cabin model

• **Specifically for electric vehicles understanding these interactions is essential!**

NNACINAL DRIVING EXCELLENCE.