

1D thermal simulation of electric vehicle - Virtual operating strategy development for transient drive cycles

MAGNA

3D CFD Simulation and/or 1D Simulation?

- Reasons for 3D CFD Simulation...
 - High level of detail
 - High fidelity of results
 - Can handle complex geometries
 - Established workflows and the theory

- Reasons for 1D simulation...
 - Very fast
 - Little modelling effort
 - No CAD geometry required
 - Can work with few data

Simulating electric vehicles often requires "the best of both worlds"

- Transient simulation of drive cycles for
- Complete cooling systems with
- Cell level battery pack simulation models and
- Detailed temperature results for e-motor components

Agenda Overview...

Thermal Management Simulation of...

- Motor/Inverter
 - E1 Motors
- Battery
- Air Cooled i-MiEV
- Coolant Cooled Tesla S
- Handling of big amount of cells
- Vehicle Model
 ____E1 Democar

... and of the complete vehicle model.

J. Poehl, Magna

Agenda Battery Simulation

Thermal Management Simulation of...

... and of the complete vehicle model.

- Motor/Inverter
 - E1 Motors
- Battery
 - Air Cooled
 i-MiEV
 - Coolant Cooled Tesla S
 - Handling of big amount of cells
- Vehicle Model
 _ E1 Democar

J. Poehl, Magna

3D Simulation Results of an E-Motor Rotor... ... and 1D discretization

MAGNA

These details need to be available in the 1D simulation model as well! (other details can be neglected)

Rotor and Stator Discretization

Discretization Rotor: PM1, 6, 7: rotor winding; PM2, 8: rotor iron sheet; PM3, 4, 5: shaft Discretization Stator:

PM1, 2: cooling jacket; PM3, 4: stator winding; PM5, 6: stator iron sheet

Discretization of one component into several point masses \rightarrow temperature distribution

1D Thermal Network for an Electric Motor

Calibration for steady state operating points and load steps based on CFD results...

Agenda Battery Simulation

Thermal Management Simulation of...

... and of the complete vehicle model.

- Motor/Inverter
 - E1 Motors
- Battery
 - Air Cooled
 - i-MiEV
 - Coolant Cooled Tesla S
 - Handling of big amount of cells
- Vehicle Model
 _ E1 Democar

J. Poehl, Magna

1) Mitsubishi i-MiEV Battery Pack

Back module pack (10 modules) (5 modules) (5 modules) (2 additional modules Front module pack (5 modules)

- Air cooled battery
- 88 Lilon battery cells
 - Cell type: Yuasa-Mitsubishi LEV 50
 - Cell capacity: 50Ah
 - Nominal voltage: 3.7V
 - Cell weight: 1.7kg

- 22 modules á 4 cells
- All cells electrically in series yields pack voltage 325.6V

Mitsubishi i-MiEV Battery Pack Schematics and Main Physical Effects

Mitsubishi i-MiEV Battery Pack Simulation Model

2) Magna E1 Battery Pack (Tesla 85kWh)

16 modules á 444 cells (Panasonic 18650) \rightarrow 7104 cells

Module has 6s74p layout \rightarrow module voltage ~25.2V All modules electrically in series \rightarrow pack voltage ~403.2V

Coolant flow through modules in parallel...

Magna E1 Battery Pack Simulation Model

Reduce Amount of Cells

Simplification of Battery Pack For Faster Vehicle Model Simulation with Detailed Cell Properties

Agenda Complete Vehicle Simulation

Thermal Management Simulation of...

... and of the **complete vehicle model**.

Motor/Inverter
 – E1 Motors

- Battery
- Air Cooled
 - i-MiEV
- Coolant Cooled Tesla S
- Handling of big amount of cells
- Vehicle Model
 __E1 Democar

Magna Powertrain Electric Vehicle Demonstrator

Objectives:

- Demonstrate eDrive product capabilities
- Proof system and vehicle Integration capabilities

MAGNA

- Vehicle controls: improved stability and handling
- Electronic Torque Vectoring (eTV)

Technical Data:

Front Axle: Highly Integrated eDrive System, with ASM Peak power 140kW (for 60s) Peak Torque 3300Nm (10s) Inverter (integrated) 500A_{rms}

- Rear Axle: Highly Integrated eDrive System, 2 x ASM with
summation gearbox, with axle lock clutch (eTV)
Peak powerPeak power280kW (for 20s)
6600Nm (10s)
Inverter (integrated)2x 500Arms
- Both drives: Liquid cooled Inverter, e-Motor stator and rotor Enhanced thermal management Rare Earth free

Tesla S / Magna E1 Simulation Model Overview

3D/1D Component Models in this Vehicle Model

- Electric Motors: Modeled as 1D thermal networks calibrated with 3D CFD results and validated with measurements
- Transmission Systems: same approach as motors
- Battery: 1D simulation model, currently partially calibrated, final model will be calibrated based on test data
- Underhood air flow: Flow distribution calibrated to fit test data. Calibration based on CFD is possible but was not used in this project
- **Cabin**: Partially calibrated based on test data. Complete calibration would require CFD simulation... not done yet!

Focus Points for the Simulation

Battery Pack Cell Temperatures for Different Drive Cycles @ 21°C

Electric Powertrain Rear Motor T for Different Drive Cycles @ 21°C

MAGNA

2/26/2018

Speed

Speed

J. Poehl, Magna

Cooling System Operating Strategy FTP75

83.CALC serial flow, 1...parallel flow FAN: 90 T_Rotor 1.RAD.Exit temperature IM 2000 rpm 80 ambient 71.CST 52 °C 80 M T Coolant Exit Shaft 72.CST 80 °C temperature: Χ5 T Mass Rotor Winding 70 30°C **Driving Speed** 70 2.TOTZ 60 Y-axis 1 [°C] 09 50 40 50 30 4-way valve opens when 20 40 $T_{rotor} > 80^{\circ}C$ 10 30 500 1000 1500 0 X-axis [s]

MAGNA

J. Poehl, Magna

Vehicle Range Ambient Temperature Influence on WLTC Range

J. Poehl, Magna

Vehicle Range Impact of Battery Heating for WLTC at -10°C

Vehicle Range Impact of Battery Heating for WLTC at -10°C

Summary

MAGNA

- A combined 3D / 1D approach combines fast simulation times (~ real time) with selective high levels of detail
- This allows investigation of complex interactions in complete vehicle thermal management simulation models combining
 - Powertrain Cooling & Driving Simulation
 - Battery Cooling & VTM Strategies
 - HVAC System & Comfort Strategies
 - Cabin model

Specifically for electric vehicles understanding these interactions is essential!

DRIVING EXCELLENCE. INSPIRING INNOVATION.