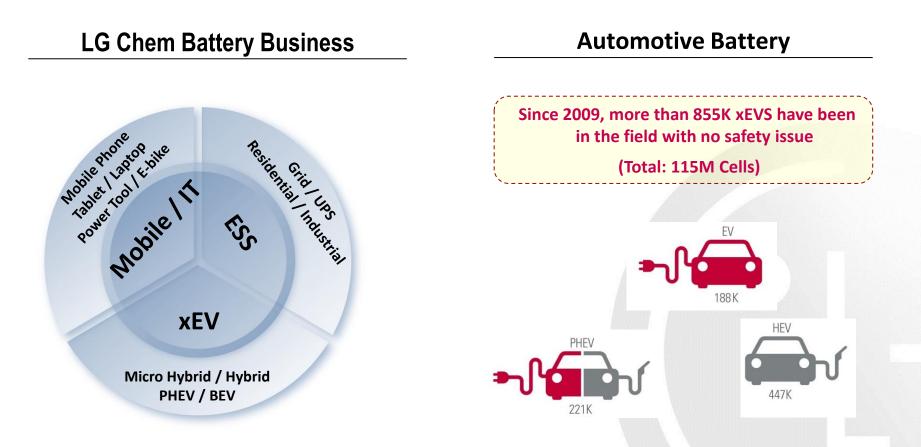
LG Chem's Current and Future Battery Technologies for xEVs

SAE 2018 Hybrid & Electric Vehicle Technologies Symposium San Diego, CA


Denise Gray

February 22, 2018

LG Chem Battery Business

LG Chem provides reliable energy solutions for Mobile/IT, ESS & xEV applications

LG Chem Battery Global Operation

4 battery production plants and 3 R&D centers

Production Capacity: > 50 GWh by 2020

Troy, Michigan

- NA Tech Center with an engineering footprint for design of modules, packs, thermal management, and BMS.
- Sales, Marketing, and Field Support for both automotive and Energy Storage (ESS) business.

- * Battery pack technology: design and development
- * Battery management systems (BMS)
- $\boldsymbol{\ast}$ System integration, validation , and test support
- * Program management
- * Warranty Analysis
- * Prototypes and production solutions

Holland, Michigan

- Manufacturing plant for cells, modules and packs
 - 5 models of cells
 - 2 models of modules
 - 2 models of packs

ELECTRIC VEHICLES

Policy, Auto OEM's Strategy

<u>Government</u> <u>Policy</u> ⊖ Subsidy, ⊜ Environmental Regulations, ⊛ Mandatory EV Production Rules
 - Banning ICE Cars : Norway/Netherland(2025), U.K./France(2040), Germany(2030, Resolution passed), China(Under consideration)

All cars to be electric or hybrid from 2019

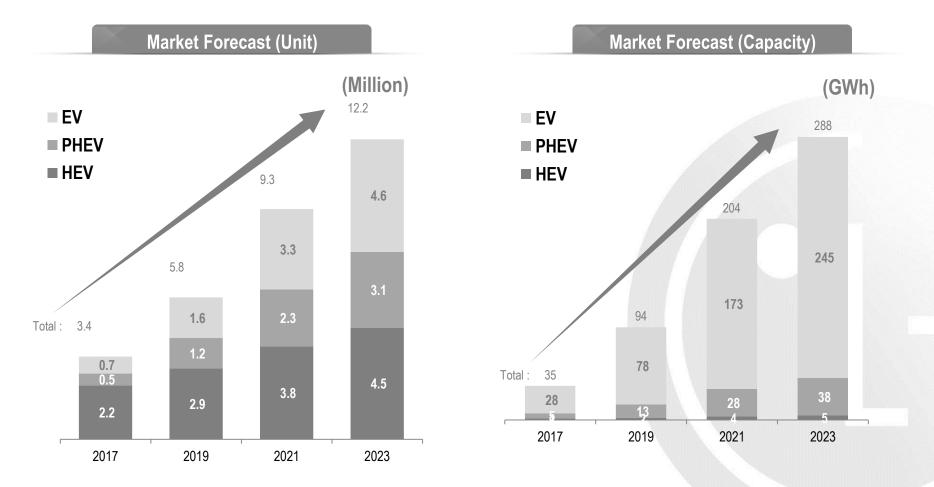
<u>Auto OEM's</u> <u>Strategy</u>

- *Find* 40 electrified vehicles by 2022. 16 EVs. \$11B investment
 - 20 new BEVs + FC by 2023

GM

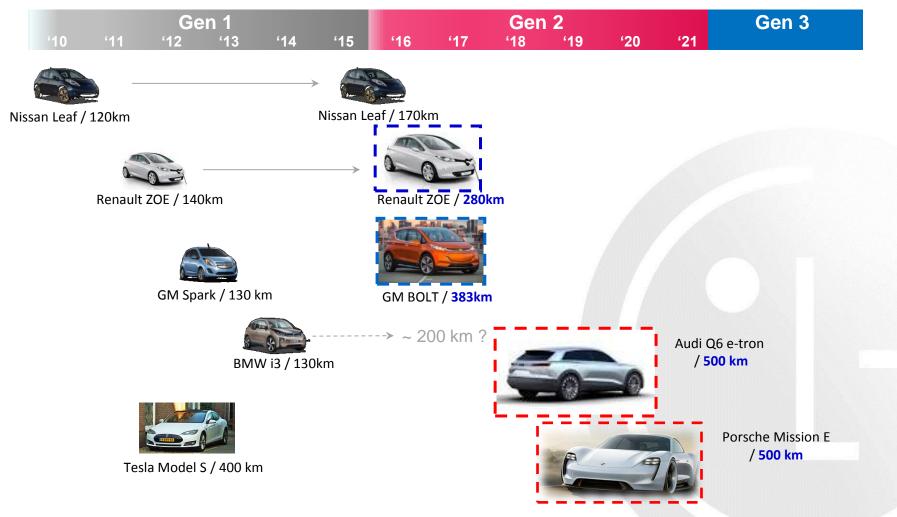
All models to be electrified by 2030. Plans to invest \$40B

12 full electric cars and 13 hybrids to market by 2025



10 new electric car models to market by 2022

50% of all vehicles will be electrified by 2030. Overall strategy region specific. 4.5M cars hybrid/PHEV, 1M EV/FC by 2030


Global xEV Market

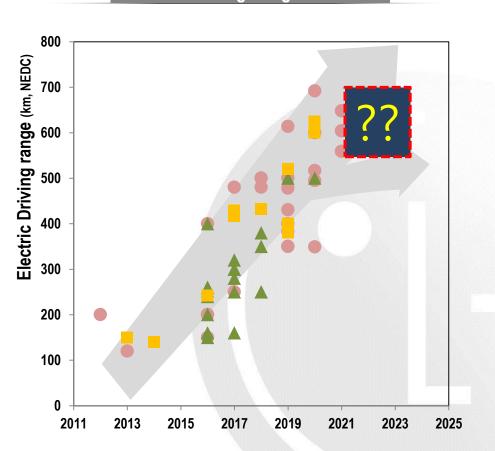
- Global xEV Market is expected to grow at a rapid pace in coming years
- EV battery demand will lead market growth in terms of battery capacity (~ 80%)

Global EV Vehicle

EVs: variety of ranges in the market or soon to be introduced

Key Challenges for Future EV Battery Development

- Driving Range Extension
 > 300 miles
- Affordable Vehicle Price
 - ⋟ \$ 100/kWh cell
 - \$125 pack
- Quick Charging
 - 80% SOC in 20 min
- Reuse and Recycle

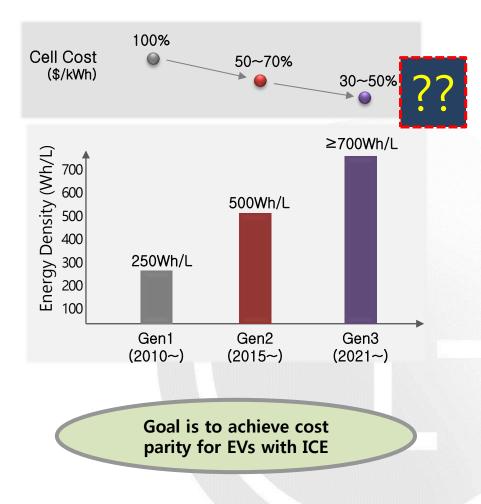


- Energy Density Increase
 - 750 Wh/l; 350 Wh/kg ('22) High energy cathode, Silicon in the anode
- Cost Reduction
 - Material innovation, simpler pack design, thermally robust chemistry; minimum cooling requirements
- Charge Power Improvement
 - Multi-step charging
 - Electrode resistance reduction by coating, doping

Driving Range Extension vs. Energy Density Increase

What should the final driving range target be?

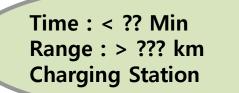
- Current ICE driving range ~ 500 -800 km
- Current EV driving range ~ 300 500 km
- Need further improvement in energy density to ensure actual driving range over 500 km at low temp and when HVAC is in use.



BEV Driving Range Trend

Cost Reduction in Vehicle vs. Battery

How much more can the battery cost be reduced?


- Current material cost of EV battery is ~
 60~80% depending on design
- Metal (Lithium, Cobalt etc.) prices have placed uncertainty on future battery price direction
- Other factors to consider: *Manufacturing, Pack, BMS, Driving range, Fuel Efficiency*

Fast Charging

How quick? How much EV range?

- Current EVs can be fast charged within 15~40 min for ~ 80% of original driving range
- Fast charging capability is inversely proportional to energy density
- Charging infrastructure needed to support fast charge (50~100 kW now)

Fast Charging <15 min >40 min 15min~40 min (SOC 80%) > 500km Driving Range (km) 00 00 000 100 250-400km 150km 100 Gen1 Gen3 Gen2 (2010~) (2015~) (2021~)

Vehicle Target

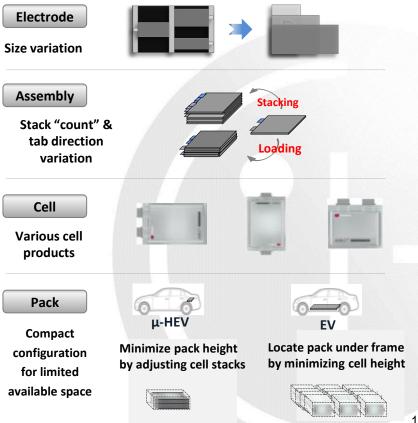
LG CHEM CELL TECHNOLOGY

Large-format pouch cells championed by LG Chem provide packaging flexibility that is a design advantage for automotive batteries.

High Energy Density

- * Our DNA is chemicals and materials
 - In-house capability for cathodes, anodes,
 - electrolytes, and separators
- * Stack & Folding structure
 - Stack & folding cell design allows uniform distribution of heat and stress

Stack & Folding

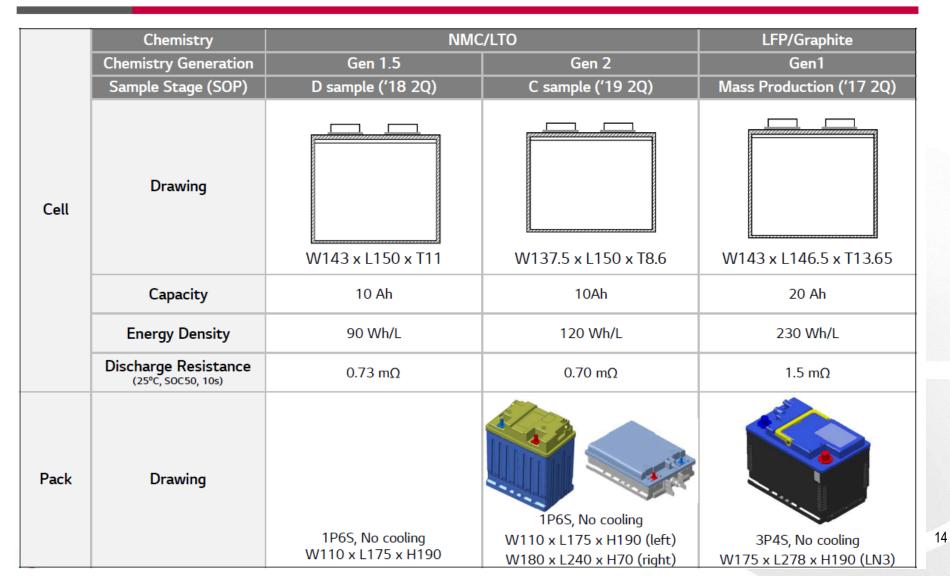

* Volumetric Energy Density

- Higher utilization of available space for active electrodes

	µ-HEV	HEV	PHEV	EV
Capacity	4~ 20Ah	5~7Ah	26~50 Ah	37~70Ah

Design Flexibility

 Pouch cells offer footprint flexibility to match vehicle package


LiB for 48V Application

LiB for 48V Application: LGC's Current Line-up for affordable 48V

	Chemistry	NCM/LTO		NCM/Graphite	
	Chemistry Generation	Gen 1	Gen 2	Gen2	Gen2
Cell	Sample Stage (SOP)	Mass Production ('17 2Q)	C sample ('19 2Q)	Mass Production ('16 1Q)	D sample ('17.4Q)
	Drawing				
		W120 x L243 x T3.7	W137.5 x L150 x T8.6	W133 x L 312.5 x T4.05	W112 x L 246.5 x T6.66
	Capacity	4.5 Ah	10Ah	9.5 Ah	9.8 Ah
	Energy Density	90 Wh/L	120 Wh/L	210 Wh/L	190Wh/L
	Discharge R (25°C, SOC50, 10s)	1.5 mΩ	0.70 mΩ	1.8 mΩ	1.6 mΩ
Pack	Drawing			CR TON	
		1P20S, Air Cooling W143.1 x L343.4 x H143	1P20S, Liquid Cooling W175 x L242 x H199	1P13S, Air Cooling W175 x L394 x H110	1P12S, Air Cooling (DC/DC) W356 x L522 x H103

13

LiB for 12 V Application LIB for 12V application : LGC's Current Line-up

Thank You!